Low dimensional projective indecomposable modules for Chevalley groups in defining characteristic

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small degree representations of finite Chevalley groups in defining characteristic

We determine for all simple simply connected reductive linear algebraic groups defined over a finite field all irreducible representations in their defining characteristic of degree below some bound. These also give the small degree projective representations in defining characteristic for the corresponding finite simple groups. For large rank l our bound is proportional to l3 and for rank 11 m...

متن کامل

Computing Projective Indecomposable Modules and Higher Cohomology Groups

We describe the theory and implementation in Magma of algorithms to compute the projective indecomposable KG-modules for finite groups G and finite fields K. We describe also how they may be used together with dimension shifting techniques to compute cohomology groups Hn(G,M) for finite dimensional KG-modules M and n ≥ 3.

متن کامل

On Induced Projective Indecomposable Modules

A well-known theorem of Fong states that over large enough fields of any characteristic, the principal indecomposable modules of a soluble finite group are induced from subgroups of order prime to the characteristic. It is shown that this property in fact characterises soluble finite groups.

متن کامل

Projective Modules over Finite Groups

Serre [5] has recently proved a general theorem about projective modules over commutative rings. This theorem has the following consequence : If 7T is a finite abelian group, any finitely generated projective module over the integral group ring Zir is the direct sum of a free module and an ideal of Zir. The question naturally arises as to whether this result holds for nonabelian groups x. Serre...

متن کامل

MOR Cryptosystem and classical Chevalley groups in odd characteristic

In this paper we study the MOR cryptosystem with finite Chevalley groups. There are four infinite families of finite classical Chevalley groups. These are: special linear groups SL(d, q), orthogonal groups O(d, q) and symplectic groups Sp(d, q). The family O(d, q) splits to two different families of Chevalley groups depending on the parity of d. The MOR cryptosystem over SL(d, q) was studied by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2013

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2012.11.038